Establishing the Baseline Race Strategy: Male Long Course 100-Meter Events

Select Competitions from 1996 - 2012

Prepared by Elliot Meena July 2013

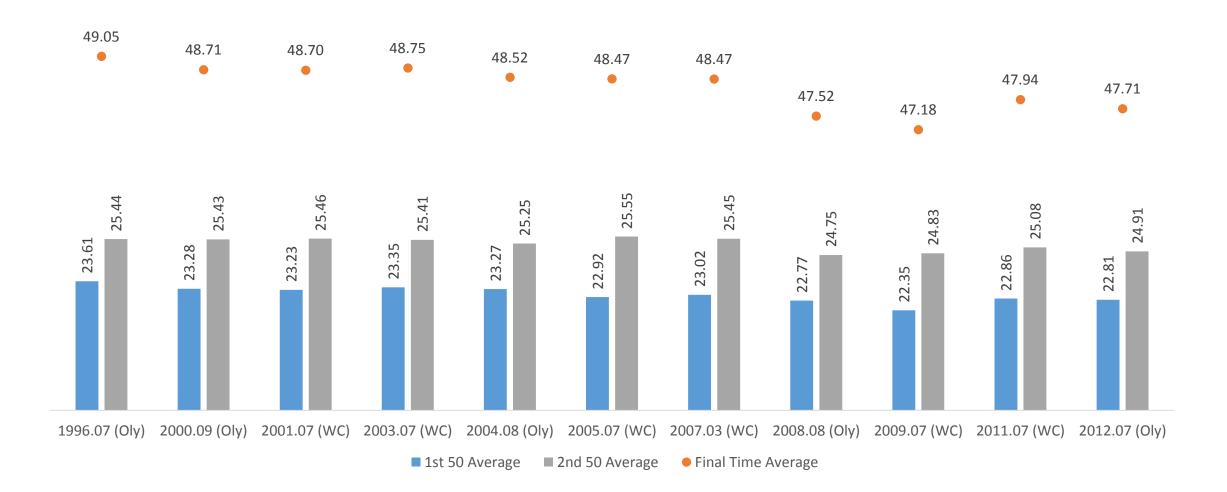
I. Introduction

- II. Analysis of the 100M Freestyle
- III. Analysis of the 100M Backstroke
- IV. Analysis of the 100M Breastroke
- V. Analysis of the 100M Butterfly
- VI. Conclusion Establishing the Baseline

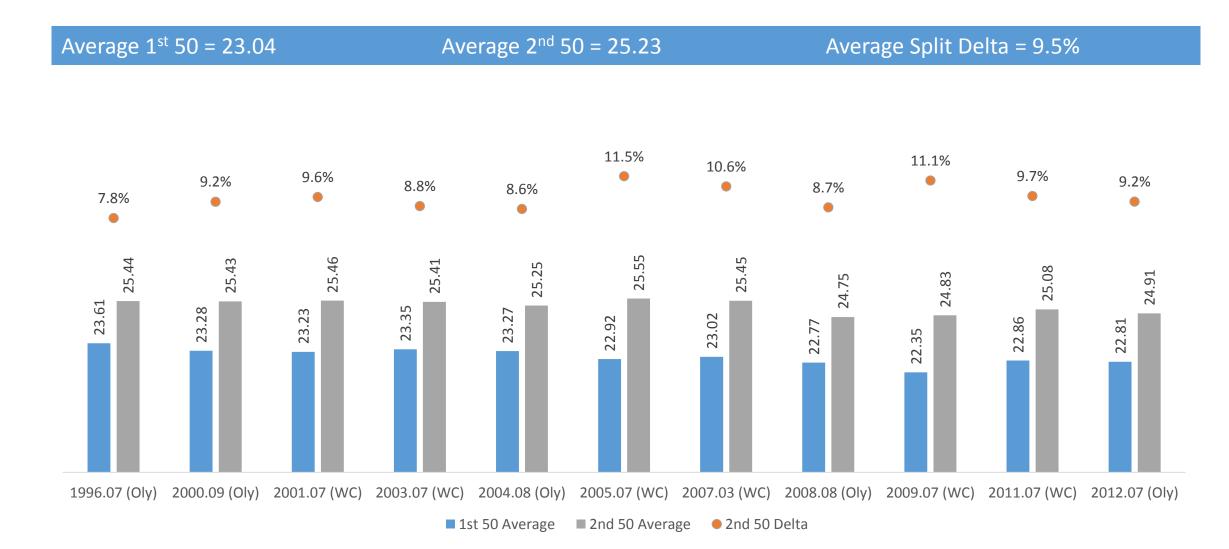
Introduction

Section I

The Subject	 An analysis of the top five male finishers in each of the 100-stroke A-Finals from a selection of international competitions over the past two decades
The Objective	 To determine the most commonly used race strategy amongst the worlds best swimmers as a baseline for developing more detailed training plans
The Approach	 Separate and analyze each lap of the 100 for every race over the years to develop an average split delta, in percentage terms, for the second 50 when baselining from the first 50 of the race
The Advantage	 Using my results, I developed a list of recommended splits for a range of times in order to give elite level swimmers a factual approach to specific goal times Using percentages as a measurement, rather than absolute times, does not disfavor any swimmers


Sex:	Session
• Male	A-Final
Distance	Place:
• 100 Meters	• 1 st – 5th
Stroke	Meets
 Freestyle Backstroke Breastroke Butterfly 	 Olympics: 96, 00, 04, 08, 12 World Championships: 01, 03, 05, 07, 09, 11

Note: In some scenarios a swimmer placing out of the top five may be included for comparison purposes. Source: International Olympic Committee, SwimRankings, Omega Timing.


Analysis of the 100M Freestyle

Section II

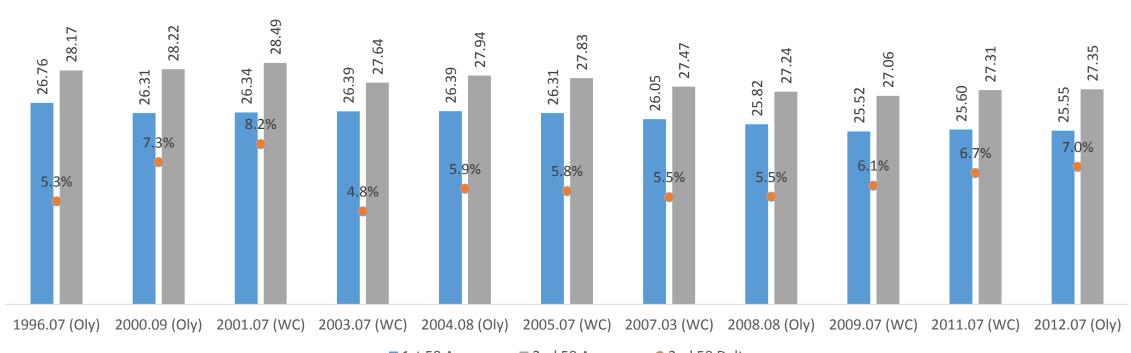
LCM Male 100 Freestyle: Race Averages

LCM Male 100 Freestyle: $1^{st} \rightarrow 2^{nd} 50$

Analysis of the 100M Backstroke

Section III

LCM Male 100 Backstroke: Race Averages



LCM Male 100 Backstroke: $1^{st} \rightarrow 2^{nd} 50$

Average $1^{st} 50 = 26.09$

Average $2^{nd} 50 = 27.70$

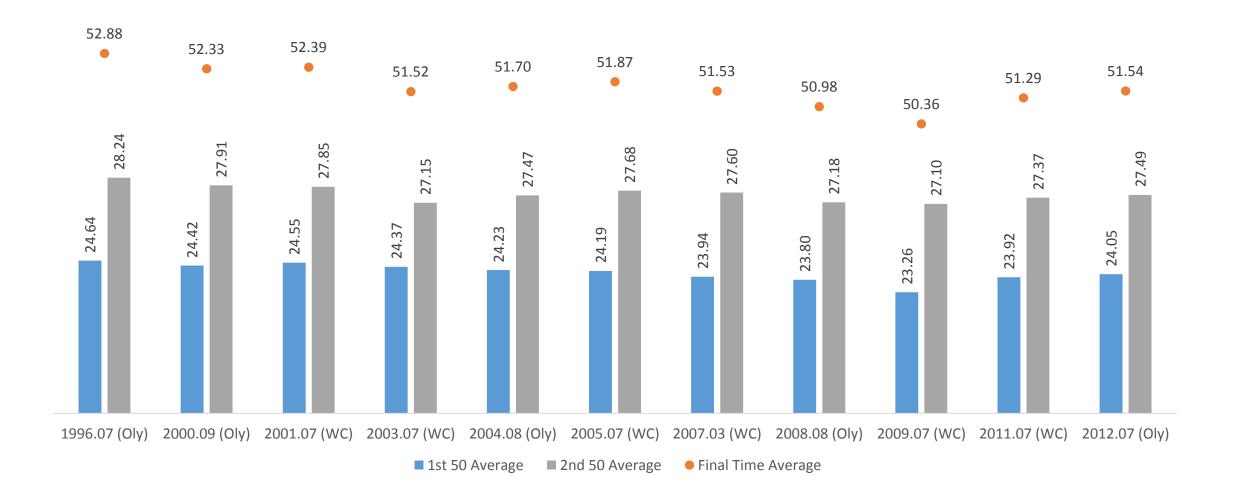
Average Split Delta = 6.2%

■ 1st 50 Average ■ 2nd 50 Average ● 2nd 50 Delta

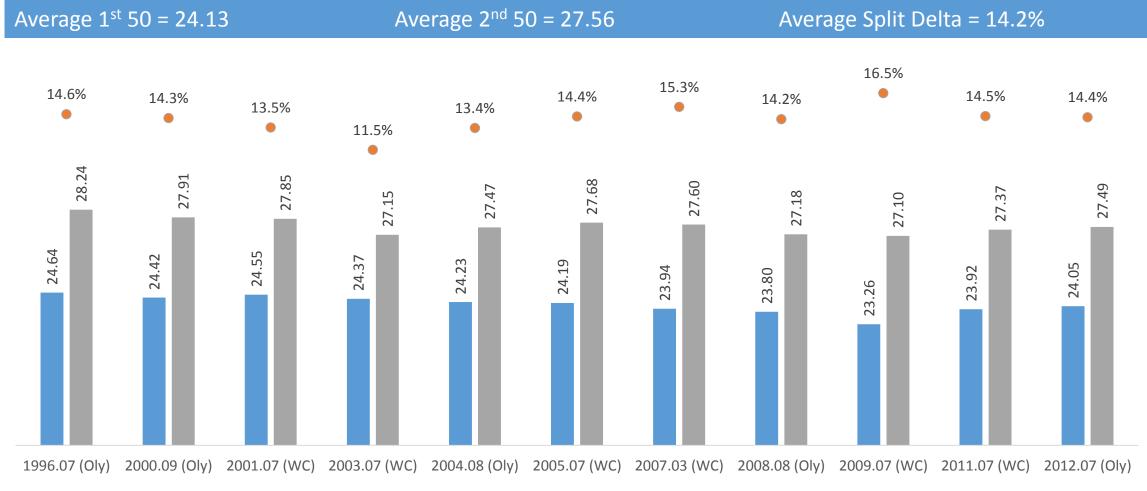
Analysis of the 100M Breastroke

Section IV

LCM Male 100 Breaststroke: $1^{st} \rightarrow 2^{nd} 50$


Average $2^{nd} 50 = 31.89$ Average 1st 50 = 28.24 Average Split Delta = 12.9% 15.8% 14.3% 14.0% 13.5% 12.8% 12.7% 12.6% 12.5% 11.7% 11.4% 10.9% 32.52 32.38 32.20 32.07 32.13 32.02 31.63 31.77 31.56 31.31 31.17 28.91 28.65 28.55 28.51 28.44 28.39 28.05 27.97 27.79 27.68 27.71 1996.07 (Oly) 2000.09 (Oly) 2001.07 (WC) 2003.07 (WC) 2004.08 (Oly) 2005.07 (WC) 2007.03 (WC) 2008.08 (Oly) 2009.07 (WC) 2011.07 (WC) 2012.07 (Oly)

■ 1st 50 Average ■ 2nd 50 Average ● 2nd 50 Delta


Analysis of the 100M Butterfly

Section V

LCM Male 100 Butterfly: Race Averages

LCM Male 100 Butterfly: $1^{st} \rightarrow 2^{nd} 50$

■ 1st 50 Average ■ 2nd 50 Average ● 2nd 50 Delta

Establishing the Baseline

Section VI

LCM Male 100M Freestyle: Baseline

- Using the average first 50 (23.04) as a baseline to the average split delta's, results in the following list of race strategies for a selection of times
- Split Delta's
 - 1st → 2nd 50 = 9.5%

Final	Splits	by 50	Split Delta
Time	1st	2nd	(seconds)
Note: all times	are formatte	d in mm:ss.l	hh
45.05	21.50	23.55	2.05
45.57	21.75	23.82	2.07
46.10	22.00	24.10	2.10
46.62	22.25	24.37	2.12
47.15	22.50	24.65	2.15
47.67	22.75	24.92	2.17
48.19	23.00	25.19	2.19
48.28	23.04	25.24	2.20
48.72	23.25	25.47	2.22
49.24	23.50	25.74	2.24
49.77	23.75	26.02	2.27
50.29	24.00	26.29	2.29
50.81	24.25	26.56	2.31
51.34	24.50	26.84	2.34
51.86	24.75	27.11	2.36
52.38	25.00	27.38	2.38
52.91	25.25	27.66	2.41

LCM Male 100M Backstroke: Baseline

- Using the average first 50 (26.09) as a baseline to the average split delta's, results in the following list of race strategies for a selection of times
- Split Delta's
 - 1st → 2nd 50 = 6.2%

Final	Splits	by 50	Split Delta
Time	1st	2nd	(seconds)
Note: all times	are formatte	d in mm:ss.l	hh
50.51	24.50	26.01	1.51
51.03	24.75	26.28	1.53
51.55	25.00	26.55	1.55
52.06	25.25	26.81	1.56
52.58	25.50	27.08	1.58
53.09	25.75	27.34	1.59
53.61	26.00	27.61	1.61
53.80	26.09	27.71	1.61
54.12	26.25	27.87	1.62
54.64	26.50	28.14	1.64
55.15	26.75	28.40	1.65
55.67	27.00	28.67	1.67
56.18	27.25	28.93	1.68
56.70	27.50	29.20	1.70
57.22	27.75	29.47	1.72
57.73	28.00	29.73	1.73
58.25	28.25	30.00	1.75

LCM Male 100M Breaststroke: Baseline

- Using the average first 50 (28.24) as a baseline to the average split delta's, results in the following list of race strategies for a selection of times
- Split Delta's
 - 1st → 2nd 50 = 12.9%

Final	Splits	by 50	Split Delta			
Time	1st 2nd		(seconds)			
Note: all times are formatted in mm:ss.hh						
56.43	26.50	29.93	3.43			
56.96	26.75	30.21	3.46			
57.49	27.00	30.49	3.49			
58.03	27.25	30.78	3.53			
58.56	27.50	31.06	3.56			
59.09	27.75	31.34	3.59			
59.62	28.00	31.62	3.62			
1:00.13	28.24	31.89	3.65			
1:00.69	28.50	32.19	3.69			
1:01.22	28.75	32.47	3.72			
1:01.75	29.00	32.75	3.75			
1:02.29	29.25	33.04	3.79			
1:02.82	29.50	33.32	3.82			
1:03.35	29.75	33.60	3.85			
1:03.88	30.00	33.88	3.88			
1:04.41	30.25	34.16	3.91			
1:04.95	30.50	34.45	3.95			

LCM Male 100M Butterfly: Baseline

- Using the average first 50 (24.13) as a baseline to the average split delta's, results in the following list of race strategies for a selection of times
- Split Delta's
 - 1st → 2nd 50 = 14.2%

Final	Splits	by 50	Split Delta			
Time	1st	2nd	(seconds)			
Note: all times are formatted in mm:ss.hh						
48.20	22.50	25.70	3.20			
48.74	22.75	25.99	3.24			
49.27	23.00	26.27	3.27			
49.81	23.25	26.56	3.31			
50.34	23.50	26.84	3.34			
50.88	23.75	27.13	3.38			
51.42	24.00	27.42	3.42			
51.69	24.13	27.56	3.43			
51.95	24.25	27.70	3.45			
52.49	24.50	27.99	3.49			
53.02	24.75	28.27	3.52			
53.56	25.00	28.56	3.56			
54.09	25.25	28.84	3.59			
54.63	25.50	29.13	3.63			
55.16	25.75	29.41	3.66			
55.70	26.00	29.70	3.70			
56.24	26.25	29.99	3.74			

Race Analysis Comparison

- This analysis confirms that energy distribution is more evenly dispersed in long-axis strokes vs. short-axis
- Additionally, this analysis shows that females race with a more narrow delta than males

Delta from 1st to 2nd 50	Long-Axis		Short-Axis			
	Freestyle	Backstroke	Average	Breastroke	Butterfly	Average
Female	8.0%	4.9%	6.5%	12.7%	13.6%	13.2%
Male	9.5%	6.2%	7.9%	12.9%	14.2%	13.6%